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A~a'aet--In order to investigate the effects of a uniform electric field on a bubble attached to a wall, 
numerical analyses and experiments have been carried out. The orthogonal curvilinear coordinate system 
generated numerically has been employed for the numerical studies based on a finite-difference solution 
of the governing equations. The steady bubble shape is obtained under the fixed contact radius condition 
as part of the solution of the free boundary problem. Along with the shape determination, the Laplace 
equation for electric potential is solved simultaneously. In experimental studies, an air bubble attached 
to one plate of a parallel-plate electrode system has been visualized under an applied electric field. The 
numerical and experimental results show generally good agreements. An air bubble on the lower electrode 
is found to be extended in the direction parallel to the applied electric field. The elongation increases with 
an increase of the electric field strength. Consequently, the contact angle also increases with an increase 
of the electric field strength if the contact radius is fixed. On the other hand, if the contact angle is fixed, 
the contact radius decreases as the electric field strength increases. It has been observed experimentally 
that the bubble departure volume remains nearly constant under the uniform electric field. This fact 
suggests that the downward electric force exerted on the bubble surface is nearly the same as the decrease 
in the surface tension force due to contact radius decrease under the uniform electric field. Copyright © 
1996 Elsevier Science Ltd. 
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I. I N T R O D U C T I O N  

It has long been established that the basic studies for the effect of an electric field on gas bubbles 
or liquid drops play an important role for understanding in the areas of heat and mass transfer 
augmentation. The fundamental researches on the electrohydrodynamic (EHD) enhancement of 
transport process can be largely classified into two groups: studies on the freely suspended 
bubbles/drops and studies on the bubbles/drops attached to a wall. 

Owing to potential applications to the industrial situation, numerous theoretical and 
experimental analyses have been conducted in the last few decades to investigate the effects of an 
electric field on the behavior of a freely suspended bubble/drop in an infinite medium. These works 
have been well documented in references (Cheng & Chaddock 1984; Chang & Berg 1985; Feng & 
Beard 1991; Wohlhuter & Basaran 1992; He & Chang 1995). 

In order to explain the electrohydrodynamic enhancement of boiling heat transfer from the 
heating surface, a great deal of experimental studies have been carried out for an attached bubble 
(Bonjour et  al. 1962; Markel & Durfee 1965; Lovenguth & Hanesian 1971; Zanin 1987). It has 
been revealed from the experimental results that the applied electric field affects the basic 
mechanisms of the nucleate boiling such as bubble formation, growth and departure from the 
heating surface. Some major effects of  an applied electric field include the increase in the number 
of  boiling bubbles, the decrease of the bubble departure volume, and the increase of maximum heat 
flux (Choi 1962; Jones 1978; Allen et  al.  1987; Cooper 1990; Ogata & Yabe 1991). Based on these 
experimental observations, it has been suggested that mutual interaction between a dielectric liquid 
and an imposing electric field leads to change in the bubble dynamics on the heating surface, which 
is believed to be one of  the main causes of  the boiling heat transfer enhancement. However, the 
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basic mechanisms of heat transfer enhancement by application of an electric field have hardly been 
clarified yet. The boiling heat transfer problem is a free boundary problem in which the gas-liquid 
interface shape is unknown a priori but must be determined as part of solution of nonlinear 
equations. Due to the intrinsic difficulty in the problem, only very few theoretical studies have been 
performed. 

Recently, Cheng & Chaddock (1986) have examined the bubble departure size in a uniform 
electric field. They used the spheroidal approximation of bubble shape and the free energy 
minimization condition to calculate the equilibrium profile of  a bubble. Their results show that 
the bubble departure size decreases with an increase of the dimensionless electric field strength. In 
the basic experiment on the behavior of  an air bubble in DC electric field, Ogata & Yabe (1993) 
observed elongation and horizontal motion of a bubble on the plate. They analysed this behavior 
by considering the electric potential distribution and the electric force around a spheroidally 
approximated bubble. However, their analyses are not rigorous in the sense that they are based 
on the spheroidal approximation for a freely suspended bubble in an infinite medium. Since the 
works of Cheng & Chaddock and Ogata & Yabe, no further attempt to study the behavior of an 
attached bubble in the presence of  an electric field has been reported. Thus, there has been a need 
for a rigorous study of  bubble behavior which is obtained without making approximations on the 
bubble shape such as the spheroidal approximation. 

In the present study, numerical analyses and experiments have been performed to investigate the 
effects of  a uniform electric field on the behavior of a bubble attached to a wall. The bubble shape 
and electric field are determined simultaneously by solving the governing equations on a 
numerically generated orthogonal curvilinear coordinate system. In our numerical studies, a bubble 
with a fixed contact area is considered in order to maintain the consistency with the experimental 
condition. In experiments, an air bubble attached to the lower fiat electrode is visualized under 
an applied electric field. 

2. PROBLEM STATEMENT 

In order to study the effects of  a DC electric field on a bubble, we consider a gas bubble attached 
to a wall as shown in figure 1. In the figure, x and tr are the rotational axis and the radial coordinate 
of  the cylindrical coordinate system and r = (x 2 + tr2) t/2. The bubble volume is assumed to be ~na 3, 
where a is the radius of  an equivalent hemispherical bubble attached to a wall. The bubble surface 
is assumed to be characterized by a uniform surface tension ? and the bubble is assumed to sit 
on the conducting fiat wall with contact angle 0c and contact radius re. The electrical conductivity 
and permittivity of  the gas inside the bubble are assumed to be negligible in comparison with those 
of the surrounding liquid. The surrounding liquid is assumed to be incompressible and it is also 

x 

~ tp 

il 

Figure 1. A bubble attached to a wall in a uniform electric field. 
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assumed that there is no bulk free charge in the surrounding liquid. The applied electric field far 
from the bubble is uniform in space and constant in time. The far field can be expressed in terms 
of  the electric potential, which is defined by E® = - V~boo, as 

r~oo = - Eoor cos 0, [1] 

where 0 is the angle measured from the symmetric axis. 
As mentioned above, it is assumed that there is no bulk free charge in the surrounding liquid. 

Thus, the electric potential around a bubble satisfies the Laplace equation 

and the boundary conditions 

Wcp = 0 [2] 

--* - E® r cos 0 as r ~ or, 

n.V~b = 0 on the bubble surface, 

[3] 

[41 

[5] 

notations for the dimensionless variables as dimensional ones if not confused) 

W~b = 0, 

with 

~b--~ - x as r--~ ~ ,  

n.Vg, = 0 on the bubble surface, 

7~ 
~b = 0 at 0 = ~ ( x  = 0). 

LIMF 22/5--£ 

[lO] 

[11] 

[121 

[13] 

7[ 
~b - 0 at 0 - ~ (x = 0), 

where n is the outgoing unit normal vector from the bubble surface. Equation [4] is the condition 
that the normal component of  the current vector (Jf= o'cE) vanishes at the insulating 
interface. Equation [5] is the condition that the surface potential of  a conducting electrode must 
be uniform. 

The bubble shape is determined by the normal stress condition 

pin --Pout + n'(n'T°)ou, = y (V .n) ,  [6] 

where pou, is simply redefined by addition of  an electrically induced pressure based on the 
incompressibility assumption for the surrounding liquid. Hence we ignore electrostriction forces 
as in Melcher & Taylor (1969). The Maxwell stress tensor T e is defined by 

T e = EEE - ½eE2I, [7] 

where E is the permittivity and E is the magnitude of  E. Therefore the normal stress condition is 
given by 

- Apo + A p g x  - ½EE~ = y(V.n), [8] 

where Ap0 is the pressure difference at x = 0, Ap the density difference, and Et the tangential 
component of  the electric field. 

To non-dimensionalize the governing equations and boundary conditions, we introduce the 
following characteristic scales 

I t = a ,  dpc = E~lc .  [9] 

Then the dimensionless governing equation and boundary conditions are (we adopt the same 
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The dimensionless normal stress condition is 

N~ 
- up + Ngx - T Et~ = ( V . n ) ,  [14] 

where Np = Apoa/V and Ng = Apga2/7. The constant Np is determined by the constraint of constant 
bubble volume V0 = 2~/3 based on the incompressibility assumption of gas inside the bubble. The 
relative importance of gravity and surface tension effects on the bubble shape is represented by 
Ng, which is called the gravity-capillary number (Crowley 1995). For large bubbles, the gravity 
effect dominates, while for small bubbles the surface tension effect will play a significant role in 
determination of static bubble shape. Another dimensionless number of importance in [14] is Ne, 
which is defined by Ne = eE2,a/7 and called the electrical Weber number. 

In this work, the free boundary problem defined by [10]-[14] has been solved numerically by 
using the orthogonal grid generation method. To corroborate the numerical results, experiments 
have also been performed. 

3. NUMERICAL SCHEME 

In free boundary problems, the boundary shape is not known a priori but must be determined 
as part of solution. In many cases, the boundary shape is determined iteratively starting from a 
certain initial shape. This iteration procedure may be incorporated with the grid generation 
technique with an adjustable function that modifies the boundary shape. In fact, the method of 
orthogonal grid generation has been successfully applied for various free boundary problems such 
as deformation of a bubble (Kang & Leal 1987). In this section, the basic idea of grid generation 
method of Ryskin & Leal (1983) is briefly reviewed. The global solution scheme to obtain the 
electric potential with determination of bubble shape will also be presented. 

3.1. Orthogonal grid generation 

The numerical generation of a boundary-fitted orthogonal coordinate system is illustrated in 
figure 2. Taking advantage of the symmetry in the problem, we consider only half of the problem 
domain. Since the physical domain (x, ~r) outside the bubble is an infinite domain, we consider 
instead an auxiliary finite domain (x*, ~r*) that can be obtained by inverse conformal mapping 

1 
x + icr -- x* -- ia ~ " [15] 

The orthogonal mapping between (x*, a*) domain and the computational (~, r/) domain can be 
found by solving the covariant Laplace equations 

- o ,  [16] 

~-~ + ~ = 0, [171 ) 

with suitable boundary conditions. In the above equations,f(~, r/) is the distortion function defined 
as the ratio of two scale factors, f(~, q) =- h*/h~'. The scale factors are defined by 

h~ = + t, a~ ) ] ' [181 

h.* = Lk a.  ) + # I " 
[19] 
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Figure 2. Orthogonal mapping of  the (x, a) domain onto (~, r/) domain. 

In our computation, we have used the specified function f(~,  r / )= n~/2 to make [16] and [17] 
determinate. As we may note from the definition of h~' (1, q), it represents the grid spacing in the 
normal direction at the boundary. Once h~* (1, r/) is specified, the boundary shape is automatically 
determined in the process of adjustment of grid spacing to satisfy the governing equations and 
boundary conditions (see Ryskin & Leal 1984). The grid system for an infinite domain outside the 
bubble can easily be obtained by inverting the (x*, ~*) domain conformally. 

3.2. Governing equations and boundary conditions in the orthogonal coordinate system 

In axisymmetric orthogonal coordinates, the Laplace equation for the electric potential around 
a bubble ~b is expressed as (Batchelor 1967) 

{20] 

The numerical scheme for solving the Laplace equation [20] (or [10] in vector form) with boundary 
conditions [I1], [12] and [13] is straightforward except that the electric potential becomes 
unbounded as r ---, oo (i.e. ~b -+ - x as r ~ or). In order to avoid the difficulty arising from the 
singularity at infinity, we define a function ~* as ~b* = ~b - q~0, where ~b0 is an unbounded function 



914 H.J. CHO et al. 

such that 4~0 ---* - x. Therefore we can assume ~b* ---, 0 as r ---* ~ .  One of the most convenient 
choices for ~b0 is the solution for the electrostatic field around a spherical bubble 

~b0= - ( ~ r 2 + r ) c o s 0 =  - X ( ~ r O +  1). [21] 

Using the relation q5 = 4~*+ ~b0, we obtain the governing equation for ~b* in orthogonal 
coordinates given by 

0¢ \ he [221 

with the boundary conditions 

~b* = 0 at ~ = 0, [23] 

&#* 04'o 
8~ - - ~ at ~ = 1, [241 

04~* 84~0 
0rl - - ~-q at r /=  0, [251 

q ~ * = 0 a t q =  1. [26] 

In order to determine the bubble shape in an electric field, we need to consider the normal stress 
balance at the surface. From [14], the normal stress condition can be applied to the bubble surface 
in the form 

- Np + Ngx - N °  -~ E~ - (~:(,~ + tq~)) = 0, [27] 

where 

1 0q~ 
E~ - h, &/ ' 

In [27], rq,) and x(~) denote the curvatures in e(,I and e(~ directions and for axisymmetric orthogonal 
coordinate system they are given by 

1 fox  O2a OZx__.Oa'~, 1 Ox 
~(") = ~ t h.a DI 

[281 h, -~ &l 2 &l 2 &l /I tcc~) = 

In addition to the normal stress condition, we use the constant volume constraint to determine the 
bubble shape. Since we assume that the bubble volume is fixed, the value of No in [27] must be 
determined in a way to satisfy the following condition at the bubble surface 

8x 
V = I rr f0' (c? ~--~)dr / = const. [29] 

The detailed procedure to determine the bubble shape will be discussed in the following section. 

3.3. Shape determination 

The bubble deformation occurs in a way to satisfy the normal stress balance. Thus, we first 
calculate the normal stress imbalance along the given bubble surface. Then the bubble surface is 
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adjusted to minimize the normal stress imbalance. Since h¢*(1. , )  is the control function for the 
shape change, we must devise a relationship between hg'(1. , )  and the normal stress imbalance 
along the bubble surface. When the bubble volume is fixed with V0. the bubble shape is determined 
during the iteration by adjusting the shape control function as 

h? " + "  (1 . . )  = / \ / V~'| '/3 h["' (1 . . )  f'l),"'. [301 
k - G }  - - 

where /3 is a positive relaxation parameter and I - I ( . ) -  fI is the excess normal stress at ~ = 1 
calculated by 

1 1 
17(.) = ~ x - ~ - ~ (x,.) + x(~>). [311 

and 

fo ' II(,)trh. d ,  

I~I - [ 3 2 ]  

f0 1 trh, dr/ 

The bubble shape determination procedure is very similar to that in Ryskin & Leal (1984). 

3.4. The global numerical procedure 

For the free-boundary problem, all equations for x*, a*, 4) are solved simultaneously with 
determination of  the boundary shape. The procedure is iterated until the fully converged solutions 
of the electric field and the coordinate system are attained. The flow sheet for the global numerical 
scheme is shown in figure 3. 

4. EXPERIMENTAL APPARATUS AND PROCEDURE 

Figure 4 shows a schematic diagram of the experimental system. The apparatus consists of two 
copper fiat electrodes with dimensions 120 mm × 120 mm, DC high voltage power supply, the high 
voltage probe and the test chamber made with tempered glass to facilitate visual observations. An 
air bubble is generated through the stainless steel tube with inner diameter 0.1 mm and outer 
diameter 0.71 mm and is injected to surrounding dielectric fluid, cyclohexane, C6Hl2. The physical 
properties of cyclohexane are listed in table 1. The air filter dryer is used to remove the moisture 
and the foreign substances within air. Since the conductivity of dried air is less than 10 -14 S/m (i.e. 
trc < 10 -14 S/m), the ratio of conductivity of air to that of cyclohexane is less than 10 -3 and it 
satisfies the assumptions made in the problem statement. The copper plate electrode is first polished 
with emery paper (no. 1000), then polished with 1/~m A1203, and finally rinsed with acetone. The 
experiments are carried out changing the applied voltage from 0 to 30 kV by DC power supply. 
The high voltage probe is used to measure the high voltage applied on the electrode accurately. 
The DC high voltage is applied to the upper electrode, while the lower electrode is grounded, so 
that an electric field between the upper and lower electrodes is built. The electric field between two 
parallel-plate electrodes is nearly uniform. In order to visualize the bubble shape in an electric field, 
back and side light methods with an extension lens and reflecting screen are used. 

5. RESULTS AND DISCUSSION 

In numerical computation, the contact radius rc is assumed to be fixed to compare the numerical 
results with the experimental results for an air bubble attached to the lower flat electrode under 
the electric field. Figure 5 shows the equipotential lines around an insulating bubble attached to 
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Figure 3. Flow chart of the numerical analysis. 

the flat wall when Ng = 0.0, rc/a = 0.8, N~ = 2.0. As shown in the figure, the equipotential lines 
become curved near the bubble surface to satisfy the boundary condition t3q~/dn = 0 and the electric 
field becomes stronger near the bubble than far from the bubble. 

In figure 6, the evolution of  bubble shape with increasing Are is shown for the case of  fixed contact 
radius rc/a = 0.535, Ng = 0.18 (these values were chosen from the experimental conditions). As in 
the case of  a freely suspended bubble in an infinite medium, a bubble becomes more extended in 
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Figure 4. Schematic diagram of the experimental apparatus. 
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Table 1. Properties of C6H~2 at 20°C 

p (density) 949 kg/rn 3 
# (viscosity) 0.92E-3 Ns/m 2 
E (permittivity) 1.948E-11 F/m 
3' (surface tension) 2.45E-2 N/m 
ac (conductivity) 2.5E-11 S/m 

(Ref. Kagaku Binran, 2nd Ed. Maruzen) 

the direction parallel to the imposed electric field as the electric field strength increases. The 
numerically obtained bubble shapes are very similar to those from the experimental visualization 
of  an air bubble on the lower electrode under a uniform electric field shown in figure 7. From figures 
6 and 7, it is shown that a larger deformation of  an air bubble is obtained for larger Ne. 

When the contact radius is fixed during deformation, the imposed electric field also affects the 
contact angle 0c. Figure 8 shows variation of  the contact angle with the increase of  Are. From the 
experimental and numerical results, it is observed that the contact angle increases with an increase 
of  Are. In figure 9, the variation of  the relative aspect ratio (AR)~/(AR)o can be seen, where (AR)o 
represents the aspect ratio of  the undeformed bubble in the absence of  a n  electric field. The relative 
aspect ratio increases almost linearly with the increase of  Are. From the figure, we can see that the 
numerical results show a good agreement with the experimental results at least up to Are = 2.0. On 
the other hand, the prediction from the spheroidal approximation (Cheng & Chaddock 1986) 
deviates considerably from the experimental results if No >/ 1.0. This fact may explain that the 
analysis based on the spheroidal approximation has some limitations in the study for deformation 
of  a bubble attached to a wall. 

In figure 10, the numerical results for the contact angle as a function of  the contact radius for 
several values of  N, are presented. From the figure, we can see that the contact angle increases with 
the increase of  electric field strength if the contact radius is fixed. On the other hand, the effect 
of  an electric field can be equivalently represented by the change in the contact radius for a fixed 
contact angle. As we can see in figure 10, the contact radius decreases with the increase of  No when 
the contact angle is fixed. 

The bubble departure volume is also affected by the electric field. When an electric field is applied, 
the force balance on a bubble for departure may be represented as 

Fb = Fs + F~, [33] 
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Figure 5. Equipotential lines around a deformed bubble attached to a wall (rc/a = 0.8, Ng = 0.0, Are = 2.0). 



9 1 8  H.  J. C H O  et al~ 

X 

X 

.g) 

I I I I I J 

x 

X 

"4 

("4 

"7, 

¢'4 

i:o 

"7 

! 

X 

x 

x 

X 

"7 

¢"4 

II 

II 

II 

li 

¢'4 

ID II 

II 

II 

O 

,.D 

O 

_= 

= 

Z 

~r 



BEHAVIOR OF A B U B B L E  IN A U N I F O R M  ELECTRIC F IELD 919 

(a) (b) (c) (d) 

(e) (fl  (g) (h) 

(I I l m m )  

Figure 7. Experimental visualization of  the shape of an air bubble attached to the lower electrode 
(re~a=0.535, Ng = 0.18). (a) 0 k V  (N~ = 0.0), (b) 6 k V  (No = 0.21), (c) 10kV (Ne = 0.584), (d) 15kV 
(N~ = 1.32), (e) 18 kV (N¢ = 1.893), (f) 20 kV (No = 2.34), (g) 25 kV (N~ = 3.66), (h) 27 kV (N~ = 4.26). 

where Fb is the ex directional component of the buoyancy force, and Fs and Fe are the -ex  
directional components of the surface tension and electric forces. In dimensional form, [33] can 
be written as 

ApgV = 2~zTrc sin 0c + fA (-ex) ' (n 'Te)dA'  [34] 

where V and A denote the bubble volume and the bubble surface area at departure time. If the 
condition of fixed contact angle is assumed as in Cheng & Chaddock (1986), the electric field 
decreases the surface tension force because the contact radius decreases as shown in figure 10. 
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Ne 

Figure 8. Compar ison  of  the numerical and experimental results for variation of  the contact angle with 
increase of  N~ (rc/a = 0.535, N~ = 0.18). 
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Figure 9. Comparison of the numerical and experimental results and the approximate prediction for 
variation of the aspect ratio with increase of No (rc/a = 0.535, N~ = 0.18). 

Therefore, if Fo exceeds the decrease in Fs (Fe > IAFd), then the departure volume increases. 
I f  Fe = IAFsI, the departure volume remains unchanged. I f  Fe < JAFsl, the departure volume 
decreases. 

In figure 11, the experimental results for the relative departure volume V~ Vo, where V0 is the 
departure volume in the absence of electric field, are shown. As shown in the figure, the relative 
departure volume is nearly constant over the entire range of the electric field strength that is 
considered. As mentioned above, the fact that the departure volume remains nearly constant means 
that the downward force exerted on the bubble surface due to the applied electric field is nearly 
the same as the decrease in the surface tension force due to contact radius decrease (i.e. Fe - IAFsl). 
Numerical computat ions for determination of  the departure volume have not been made. In order 
to compute the departure volume, the bubble growth problem must be considered. However, in 
this work, we have studied the effects of  the electric field on the deformation of a bubble with a 
given volume. Currently, numerical studies on the bubble growth problem are being carried out 
in our group, and the results will be presented in the near future. 
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Figure 10. Plot of the contact angle vs the dimensionless contact radius for several Arc values (N~ = 0.18). 
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Figure 11. Experimental results for the relative bubble departure volume (N~ = 0.183-0.184). 

6. CONCLUSIONS 

To investigate the effects of  a uniform electric field on an insulating bubble attached to a wall, 
numerical analyses and experiments are carried out. Fairly good agreements between the numerical 
and experimental results are obtained. When a'n electric field is applied, an air bubble on the lower 
electrode is found to be extended in the direction parallel to the imposed electric field. The 
elongation increases as the electric field strength increases. Consequently, the aspect ratio and the 
contact angle also increase with the increase of  the electric field strength when the contact radius 
is fixed. On the other hand, the contact radius decreases as the electric field strength increases if 
the contact angle is fixed. It is observed experimentally that the bubble departure volume is nearly 
constant in a uniform electric field. This means that the downward electric force exerted on the 
bubble surface is nearly the same as the decrease in the surface tension force due to contact radius 
decrease under the imposed electric field. 
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